- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bejger, Christopher M (1)
-
Borodin, Oleg (1)
-
Chak, Chanmonirath Michael (1)
-
Chiu, Nan‐Chieh (1)
-
Fang, Chong (1)
-
Garaga, Mounesha (1)
-
Garaga, Mounesha N. (1)
-
Ghahremani, Raziyeh (1)
-
Greaney, Peter Alex (1)
-
Greenbaum, Steve (1)
-
Greenbaum, Steve G (1)
-
Greenbaum, Steve G. (1)
-
Gurkan, Burcu (1)
-
Hasan, Fuead (1)
-
Jayakumar, Rishivandhiga (1)
-
Ji, Xiulei (1)
-
Johnson, Michel (1)
-
Lee, Yun-Yang (1)
-
Ma, Lin (1)
-
Maginn, Edward J. (1)
-
- Filter by Editor
-
-
Gardas, Ramesh L. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Penley, Drace; Wang, Xiaoyu; Lee, Yun-Yang; Garaga, Mounesha N.; Ghahremani, Raziyeh; Greenbaum, Steve; Maginn, Edward J.; Gurkan, Burcu (, Journal of Chemical & Engineering Data)Gardas, Ramesh L. (Ed.)The solvation structure and transport properties of Li+ in ionic liquid (IL) electrolytes based on n-methyl-n-butylpyrrolidinium cyano(trifluoromethanesulfonyl)imide [PYR14][CTFSI] and [Li][CTFSI] (0 ≤ xLi ≤ 0.7) were studied by Raman and Nuclear Magnetic Resonance (NMR) diffusometry, and molecular dynamics (MD) simulations. At xLi < 0.3, Li+ coordination is dominated by the cyano group. As xLi is increased, free cyano-sites become limited, resulting in increased coordination via the sulfonyl group. The 1:1 mixture of the symmetric anions bis(trifluoromethanesulfonyl)imide ([TFSI]) and dicyanamide ([DCA]) results in similar physical properties as the IL with [CTFSI]. However, anion asymmetry is shown to increase Li-salt solubility and promote Li+ transference. The lifetimes of Li+-cyano coordination for [CTFSI] are calculated to be shorter than those for [DCA], indicating that the competition from the sulfonyl group weakens its solvation with Li+. This resulted in higher Li+ transference for the electrolyte with [CTFSI]. In relation to the utility of these electrolytes in energy storage, the Li–LiFePO4 half cells assembled with IL electrolyte (xLi = 0.3, 0.5, and 0.7) demonstrated a nominal capacity of 140 mAh/g at 0.1C rate and 90 °C where the cell with xLi = 0.7 IL electrolyte demonstrated 61% capacity retention after 100 cycles and superior rate capability owing to increased electrochemical stability.more » « less
-
Tang, Longteng; Xu, Yunkai; Zhang, Weiyi; Sui, Yiming; Scida, Alexis; Tachibana, Sean R.; Garaga, Mounesha; Sandstrom, Sean K.; Chiu, Nan‐Chieh; Stylianou, Kyriakos C.; et al (, Angewandte Chemie International Edition)Abstract Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions—25 wt.% LiCl and 62 wt.% H3PO4—cooled to −78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ions become less hydrated and pair up with Cl−, ice‐like water clusters form, and H⋅⋅⋅Cl−bonding strengthens. Surprisingly, this low‐temperature solvation structure does not strengthen water molecules’ O−H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O−H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH−and H+, the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li‐ion battery using LiMn2O4cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.more » « less
An official website of the United States government
